Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38399438

ABSTRACT

Malaria, Chagas disease, and leishmaniasis are tropical diseases caused by protozoan parasites of the genera Plasmodium, Trypanosoma and Leishmania, respectively. These diseases constitute a major burden on public health in several regions worldwide, mainly affecting low-income populations in economically poor countries. Severe side effects of currently available drug treatments and the emergence of resistant parasites need to be addressed by the development of novel drug candidates. Natural 2,5-Diketopiperazines (2,5-DKPs) constitute N-heterocyclic secondary metabolites with a wide range of biological activities of medicinal interest. Its structural and physicochemical properties make the 2,5-DKP ring a versatile, peptide-like, and stable pharmacophore attractive for synthetic drug design. In the present work, twenty-three novel synthetic 2,5-DKPs, previously synthesized through the versatile Ugi multicomponent reaction, were assayed for their anti-protozoal activities against P. falciparum, T. cruzi, and L. infantum. Some of the 2,5-DKPs have shown promising activities against the target protozoans, with inhibitory concentrations (IC50) ranging from 5.4 to 9.5 µg/mL. The most active compounds also show low cytotoxicity (CC50), affording selectivity indices ≥ 15. Results allowed for observing a clear relationship between the substitution pattern at the aromatic rings of the 2,5-DKPs and their corresponding anti-Plasmodium activity. Finally, calculated drug-like properties of the compounds revealed points for further structure optimization of promising drug candidates.

2.
J Agric Food Chem ; 70(6): 1799-1809, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35130436

ABSTRACT

To investigate the herbicidal potential of 2,5-diketopiperazines (2,5-DKPs), we applied a known protocol to produce a series of 2,5-DKPs through intramolecular N-alkylation of Ugi adducts. However, the method was not successful for the cyclization of adducts presenting aromatic rings with some substituents at the ortho position. Results from DFT calculations showed that the presence of voluminous groups at the ortho position of a benzene ring results in destabilization of the transition structure. Lower activation enthalpies for the SN2-type cyclization of Ugi adducts were obtained when bromine, instead of a chlorine anion, is the leaving group, indicating that the activation enthalpy for the cyclization step controls the formation of the 2,5-DKP. Some Ugi adducts and 2,5-DKPs formed crystals with suitable qualities for single-crystal X-ray diffraction data collection. Phytotoxic damage of some 2,5-DKPs on leaves of the weed Euphorbia heterophylla did not differ from those caused by the commercial herbicide diquat.


Subject(s)
Herbicides , Alkylation , Density Functional Theory , Diketopiperazines , Molecular Structure , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...